Part of the  

Chip Design Magazine

  Network

About  |  Contact

How can the Chip Community Improve the Industry for IOT Designers?

Meeting the 20 billion IOT devices prediction by 2020 will require the semiconductor industry to streamline its processes for up and coming chip designers.

By John Blyler, Editorial Director, IOT Embedded Systems

Part I of this article covered the difficulties in designing System-on-Chip (SOC) devices for the Internet-of-Things (IOT) market, as explained by Jim Bruister, CEO of SOC Solutions, during his talk at the inaugural REUSE event. In Part II, we will examine ways for the semiconductor and electronics industries to improve the development process for the next generation of IOT designers. — JB

Quotable  Quotes:

  • … the semiconductor community needs to market outside of its traditional channels, for example, to the “Field and Stream” or perhaps the “Sports Illustrated” communities.”
  • … licensing agreements represent a real problem for buyers especially those that must buy IP from multiple vendors.
  • … a general contractor type of person is needed for the emerging IOT design industry.
  • … (could) open source be used to get IOT designers started especially with FPGAs? 

How, then, do we improve as an industry to ensure success for IOT chip designers? Bruister believes there are 5 pieces that need to be in place. First among those is a proactive ecosystem, one that consists of more than just a few companies getting together and sharing their names on websites.

Secondly, the ecosystem must consist of IP providers, design houses and even the foundries whose goal is to offer real SOC reference designs for the IOT community.

Information marketing focused on the IoT business channels is the third needed item. Bruister emphasized that the semiconductor community needs to market outside of its traditional channels, for example, to the “Field and Stream” or perhaps the “Sports Illustrated” communities. The semiconductor world needs to reach out to those places where the next generation of SOC designers will live.

Fourthly, a general contractor type of position is needed in the IOT SOC ecosystem. By analogy, a general contractor is the person that helps you build a house. The general contractor has the experience and connections to bring in and coordinate the activities of the framer, electrician, plumber and others needed to build a house. The same type of person is need for IOT designers.

At this point in the presentation, an attendee from the audience noted the general contractor should probably own all of the tools for the “building of a house” analogy to work. Bruister looked at the problem differently, explaining that the general contractor for a house doesn’t typically own all the tools.

“I see the general contractor (for IOT design) more like a consultant that selects the design house and helps you pick the IP,” explained Bruister. There are design houses that play that role, but it’s not a smooth flow of activities from start to finish for doing an IOT design. That’s where I think a general contractor or coordinator could help.”

The last thing needed for improvement in the IOT design process was one stop shopping with a common licensing model. Today, there is no standard licensing model and there will probably never be one, said Bruister. But the licensing agreements represent a real problem for buyers especially those that must buy IP from multiple vendors. Current models take way too long to license the IP, get it in-house and evaluate the IP. There needs to be a consolidation on how IP is licensed. Bruister suggested a boiler plate IP license that could contain 90% of the common elements required in a license.

Bruister concluded by saying that the semiconductor industry needs to figure out a way to simplify the whole IOT design process. This statement prompted a question about the use of open source tools and IP as a possible solution. The questioner noted that open source could be used to get IOT designers started especially with FPGAs.

Bruister wondered if there were enough open source folks that would significantly help with the 20 billion predicted IOT devices by 2020. Nikos Zervas, CEO of CAST, who was in the audience, noted that relying on open source may be problematic with the millions of dollars involved in chip design. He question who would stand behind the open source tools in such a case.

But the questioner was persistent, saying that even major chip IP providers like ARM don’t pay for the blunders of the chip designer. He cited software as another example were nothing is really warranted, in his opinion.

Bruister tried to address the question by looking at the big picture. For the coming IOT design challenges, there will be one camp of providers who believe that one hundred different designs types will be good for all devices. The opposing camp will believe that each design situation will require some customization, e.g., to include energy harvesting capabilities, etc. Both groups will be large and vocal. The IOT device market will be so big that it will have lots variability.

“But the common thread is that it takes way too long to design IOT devices,” said Bruister. “There is no way we can reach that many devices with such a long design and long IP licensing processes. Expensive tools are always going to be an issue. I don’t think you can get away from that unless the big EDA vendors decide to go with a “pay as you design” model. They have resisted that for years.”

It may be difficult to simplify the process for less SOC experienced IOT designers, but we must try if the IOT market is to realize it’s potential.

Leave a Reply