Part of the  

Chip Design Magazine


About  |  Contact

Points-of-Interest in the “DAC Zone”

If I had my choice, these are the papers and events that I would attend at the upcoming Deign Automation Conference (DAC).

As Sean “Rod Sterling” O’Kane intones: “… you’re moving into a land of both substance and possibilities … You’ve just crossed over into the DAC Zone.”


In that same spirit, I’ve scoured the upcoming DAC schedule to find the papers and events of both substance and possibilities. What follows is my list of activities that grabbed my attention – my DAC “must-sees.”

There is just one problem: I’m not the captain of my fate at trade shows. Typically, my scheduled is decided by others. But if your fate is freer, then I humbly submit these entries for your consideration in “the DAC Zone.”


Sunday (May 3, 2012)

7pm – Come hear the 24th annual update on the state of EDA by Gary Smith.

This year’s talk will focus on multi-platform designs and how these platforms are dramatically cutting the cost of design. (Location: Marriott Hotel, Salon 6) 


Monday (May 4, 2012)

8:30am – System-Level Exploration of Power, Temperature, Performance, and Area for Multicore Architectures

Summary: With the proliferation of multicore architectures, system designers critically need simulation tools to perform early design space exploration of different architectural configurations. Designers typically need to evaluate the effect of different applications on power, performance, temperature, area and reliability of multicore architectures. (Location: 305, Tutorial repeats at 11:30am and 3:30pm)

11:30 am – Dr. John Heinlein of ARM will present the “IP Talks!” keynote. ( booth #1202) 

12:15 pm – A celebration of the 10th Anniversary of OpenAccess – Si2 Open Luncheon (Location: 303)

1:00 pm – Xilinx’s Tim Vanevenhoven will probably talk about the challenges of FPGA IP integration. Tim is an engaging speaker. Be sure to ask him about his recent cart-athlon experience. ( Booth 1202)

3:15pm - Pavilion Panel: The Mechanics of Creativity

What does it take to be an idea machine? Design is an inherently creative process, but how can we be creative on demand? How can we rise above mundane tasks with flashes of brilliance? Discover secrets of technical and business creativity and calculated risk taking, and share stories of innovation. (Location: Booth #310)

Moderator: Karen Bartleson from Synopsys, Inc.

Speakers: Dee McCrorey from Risktaking for Success LLC; Sherry Hess from AWR Corp.;    Lillian Kvitko from Oracle


Tuesday (June 5, 2012)

8:30 am - Keynote: Scaling for 2020 Solutions 

Comparing the original ARM design of 1985 to those of today’s latest microprocessors, ARM’s Mike Muller will look at how far has design come and what EDA has contributed to enabling these advances in systems, hardware, operating systems, and applications and how business models have evolved over 25 years. He will then speculate on the needs for scaling designs into solutions for 2020 from tiny embedded sensors through to cloud based servers which together enable the internet of things. He will look at what are the major challenges that need to be addressed to design and manufacture these systems and proposes some solutions. (Location: 102/103)

10am – Pavilion Panel: Hogan’s Heroes: Learning from Apple

Apple. We admire their devices, worship their creators and praise their stock in our portfolios. Apple is synonymous with creative thinking, new opportunities, perseverance and wild success. Along the road, Apple set new technical and business standards. But how much has the electronics industry, in particular EDA, “where electronics begins,” learned from Apple? It depends. (Location: Booth #310)

Moderator: Jim Hogan from Tela Innovation, Inc.

Speakers: Jack Guedjf from Tensilica, Inc.; Tom Collopy from Aggios, Inc.; and Jan Rabaey – Univ. of California, Berkeley


(Why did the DAC committee schedule these two powerful talks at the same time?)

10am – Software and Firmware Engineering for Complex SoCs

Summary: Early software development is crucial for today’s complex SoCs, where the overall software effort typically eclipses the hardware effort. Further, delays in software directly impact the time to market of the end product. The presentations in this session explore how to architect ASIPs for wireless applications, how to bridge RTL and firmware development, and approaches in pre-silicon software development. (Location: 106)

Speakers from IMEC, Marvell, and Intel

11am – (Research Paper) Design Automation for Things Wet, Small, Spooky, and Tamable - Realizing Reversible Circuits Using a New Class of Quantum Gates

Summary: The future of design automation may well be in novel technologies and in new opportunities. This session begins with design techniques that in the past may have applied exclusively to electronic design automation, but now are applied to the wet (microfluidics), the small(nanoelectronics), and the spooky (quantum). The papers cover routing and placement, pin assignment, cell design, and technology mapping applied to microfluidics biochips, quantum gates, and silicon nanowire transistors. (Location: 300)

1:30pm – Can EDA Combat the Rise of Electronic Counterfeiting?

Summary: The Semiconductor Industry Association (SIA) estimates that counterfeiting costs the US semiconductor companies $7.5B in lost revenue, and this is indeed a growing global problem. Repackaging the old ICs, selling the failed test parts, as well as gray marketing, are the most dominant counterfeiting practices. Can technology do a better job than lawyers? What are the technical challenges to be addressed? What EDA technologies will work: embedding IP protection measures in the design phase, developing rapid post-silicon certification, or counterfeit detection tools and methods? (Location: 304)

– I’ve been discussion this area with growing interest:

1:30pm – 9.1: Physics Matters: Statistical Aging Prediction under Trapping/Detrapping

With shrinking device sizes and increasing design complexity, reliability has become a critical issue. Besides traditional reliability issues for power delivery networks and clock signals, new challenges are emerging. This session presents papers that cover a wide spectrum of reliability issues including long-term device aging, verification of power and 3-D ICs, and high-integrity, low-power clock networks. (Location: 300)


2pm – Stephen Maneatis of True Circuits will undoubtedly highlight trends in low node PLL and DLL IP, a critical element in all ICs.


4pm – Self-Aware and Adaptive Technologies: The Future of Computing Systems? — 14.1: Self-Aware Computing in the Angstrom Processor

Summary: This session will present contributions from industry and universities toward the realization of next-generation computing systems based on Self-Aware computing. Self-Aware computing is an emerging system design paradigm aimed at overcoming the exponentially increasing complexity of modern computing systems and improving performance, utilization, reliability, and programmability. In a departure from current systems which are based on design abstractions that have persisted since the 1960s which place significant burden on programmers and chip designers, Self-Aware systems mitigate complexity by observing their own runtime behavior, learning, and taking actions to optimize behaviors automatically. (Location: 304)




Wednesday (June 6, 2012)


9:15am – Dark Side of Moore’s Law

Semiconductor companies double transistor counts every 22 months, yet device prices stay relatively the same. This has been a windfall for customers but not for chip makers, who have exponentially increasing design costs every new cycle. Venture capitalist Lucio Lanza and panelists will discuss what it will take to bring design costs and profitability back into harmony with Moore’s Law. (Location: Booth #310)

Moderator: Lucio Lanza – Lanza TechVentures

Speakers: John Chilton from Synopsys, Consultant Behrooz Abdi and Steve Glaser from Xilinx




John Chilton from Synopsys




9:30am – Low-Power Design and Power Analysis –  22.2: On the Exploitation of the Inherent Error Resilience of Wireless Systems under Unreliable Silicon

For some applications, it is sometimes worth giving up a limited amount of precision or reliability if that leads to significant power savings. Similarly, being able to operate “off the grid” means one needs to give up the certainty of traditional power sources to enable power harvesting opportunities. The papers in this session illustrate the trade-offs inherent in operating in extreme low-power regimes. (Location: 306)


10:45am – Keynote: Designing High Performance Systems-on-Chip

Experience state-of-the art design through the eyes of two experts that help shape these advanced chips! In this unique dual-keynote – IBM’s Joshua Friedrich and Intel’s Brad Heaney, the design process at two leading companies will be discussed. The speakers will cover key challenges, engineering decisions and design methodologies to achieve top performance and turn-around time. The presentations describe where EDA meets practice under the most advanced nodes, so will be of key interest to both designers and EDA professionals alike. (Location: 102/103)


1:30pm – Design Challenges and EDA Solutions for Wireless Sensor Networks

The good folks at CEA-LETI, Grenoble, France, aim to present a complete overview of the state-of-the-art technologies and key research challenges for the design and optimization of wireless sensor networks (WSN). Thus, it will specifically cover ultra-low-power (ULP) computing architectures and circuits, system-level design methods, power management, and energy-scavenging mechanisms for WSN. A key aspect of this special session is the interdisciplinary nature of the discussed challenges in WSN conception, which go from basic hardware components to software conception, which requires an active engagement of both academic and industrial professionals in the EDA field, computer and electrical engineering, computer science, and telecommunication engineering. (Location: 304)


3pm – Synopsys’s John Swanson speaks on verification IP. Afterward, Cadence’s Susan Peterson will talk on the same topic. Might be worth listening to see how the two EDA giants differentiate one another. ( Booth 1202)


3:30pm Cadence’s Susan Peterson will address the audience on verification IP. You’ll probably want to catch the prior Synopsys presentation, too.


3:30pm – Pavilion Panel: Teens Talk Tech

High school students tell us how they use the latest tech gadgets, and what they expect to be using in three to five years. They give insights into the next killer applications and what they would like to see in the next generation of hot new electronics products that we should be designing now. (Location: Booth #310)

Moderator: Kathryn Kranen from Jasper Design Automation

Speakers: Students from Menlo High School, Atherton, CA


4pm – Breaking out of EDA: How to Apply EDA Techniques to Broader Applications

Throughout its history, myriads of innovations in EDA (Electronic Design Automation) have enabled high performance semiconductor products with leading edge technology. Lately we have observed several research activities where EDA innovations have been applied to broader applications with complex nature and the large scale of data sets. The session provides some tangible results of these multi-disciplinary works where non-traditional EDA problems directly benefit from the innovation of EDA research. The examples of non-EDA applications vary from bio-medical applications to smart water to human computing. (Location: 304)


4:30pm – Pavilion Panel: Hardware-Assisted Prototyping and Verification: Make vs. Buy?

As ASIC and ASSP designs reach billions of gates, hardware-assisted verification and/or prototyping is becoming essential, but what is the best approach? Should you buy an off-the-shelf system or build your own? What criteria – time-to-market, cost, performance, resources, quality, ease of use – are most important? Panelists will share their real world design trade-offs. (Location: Booth #310)

Moderator: Gabe Moretti from Gabe on EDA

Speakers: Albert Camilleri from Qualcomm, Inc.; Austin Lesea from Xilinx, Inc.; and Mike Dini from The Dini Group, Inc.




Thursday (June 7, 2012)


11am – Keynote: My First Design Automation Conference – 1982

C. L. Liu talks about his first DAC experience: It was June 1982 that I had my first technical paper in the EDA area presented at the 19th Design Automation Conference. It was exactly 20 years after I completed my doctoral study and exactly 30 years ago from today. I would like to share with the audience how my prior educational experience prepared me to enter the EDA field and how my EDA experience prepared me for the other aspects of my professional life.


1:30pm – It’s the Software, Stupid! Truth or Myth?

It’s tough to differentiate products with hardware. Everyone uses the same processors, third party IP and foundries; now it’s all about software.  But, is this true?  Since user response, power consumption and support of standards rely on hardware, one camp claims software is only as good as the hardware it sits on. Opponents argue that software differentiates mediocre products from great ones. A third view says only exceptional design of both hardware and software creates great products – and the tradeoffs make great designers. Watch industry experts debate whether it’s really all about software. (Location: 305)

Chair: Chris Edwards from the Tech Design Forum

Speakers: Serge Leef from Mentor Graphics Corp.; Chris Rowen from Tensilica, Inc.; Debashis Bhattacharya from FutureWei Technologies, Inc.; Kathryn S. McKinley from Microsoft Research, Univ. of Texas; and Eli Savransky from NVIDIA Corp.


3:30pm – Parallelization and Software Development: Hope, Hype, or Horror?

With the fear that the death of scaling is imminent, hope is widespread that parallelism will save us. Many EDA applications are described as “embarrassingly parallel,” and parallel approaches have certainly been effectively applied in many areas. Before the panel begins, come hear perspective on software development and the challenges associated with writing good software that are only exacerbated by the growing need to write robust, testable, and efficient parallel applications. Then watch the panelists debate future productive directions and dead ends to developing and deploying parallel algorithms. Find out if claims to super speedups are exaggerated and if the investment in parallel algorithms is worth the high development cost. (Location: 305)

Chair: Igor Markov from the Univ. of Michigan

Speakers: Anirudh Devgan from Cadence Design Systems, Inc.; Kunle Olukotun from Stanford Univ.; Daniel Beece from IBM Research; Joao Geada from CLK Design Automation, Inc.; and Alan J. Hu from the Univ. of British Columbia


3:30pm – Research Paper: Wild And Crazy Ideas

It cannot get any crazier! Your friends on Facebook verify your designs. Your sister is eavesdropping on your specification. Do not take “no” for implication. Build satisfying circuits with noise. Let spin-based synapses make your head spin. Use parasitics to build 3-D brains. (Location: 308)

– 53.1: CrowdMine: Towards Crowdsourced Human-Assisted Verification

Chair:   Farinaz Koushanfar from Rice Univ.

Speakers: Wenchao Li from the Univ. of California, Berkeley; Sanjit A. Seshia from the Univ. of California, Berkeley; and Somesh Jha from the Univ. of Wisconsin



Works in progress


55.18 — Using a Hardware Description Language as an Alternative to Printed Circuit Board Schematic Capture

This paper proposes using hardware description languages (HDLs) for PC board schematic entry. Doing so provides benefits already known to ASIC and FPGA designers including the ability to design using standard and open languages, the ability to edit designs using familiar text editors, the availability source code control systems for collaboration and the tracking and managing of design changes, and the use of IDE’s to help in the design entry process. This talk will introduce PHDL – an HDL specifically developed for doing PC board design capture and describe examples of its initial use for PC board designs.

Speakers from Brigham Young Univ.

55.21 — TinySPICE: A Parallel SPICE Simulator on GPU for Massively Repeated Small Circuit Simulations

Nowadays variation-aware IC designs require many thousands or even millions of repeated SPICE simulations for relatively small nonlinear circuits. In this work, we present a massively parallel SPICE simulator on GPU, TinySPICE, for efficiently analyzing small nonlinear circuits, such as standard cell designs, SRAMs, etc. Our GPU implementation allows for a large number of small circuit simulations in GPU’s shared memory that involve novel circuit linearization and matrix solution techniques, and eliminates most of the GPU device memory accesses during the Newton-Raphson iterations, which thereby enables extremely high-throughput SPICE simulations on GPU. Compared with CPU-based SPICE simulations, TinySPICE achieves up to 264X speedups for SRAM yield analysis without loss of accuracy.

Speakers from Michigan Technological University



Originally published on – “IP Insider”

2 Responses to “Points-of-Interest in the “DAC Zone””

  1. Harry Gries Says:

    Hi John,

    An impressive list, no doubt. At the risk of being accused of trolling, I’d like to make people aware of the SoC Integration Forum that Duolog will be hosting as well. We’ll be discussion the challenges of SoC Integration in its various aspects. There are 9 separate sessions with folks from (in alphabetical order so as not to offend anyone)

    Chip Estimate
    EE Times
    Gary Stringham
    Harry the ASIC Guy :)
    Mentor Graphics

    You can see the detailed descriptions and register at or just come on by. We’d love to have you squeeze us in as well to your busy schedule above and we might even be able to show you some new stuff we’ve been cooking up.



    P.S. If you submit a question to @duolog for one of the panels, you can will a nice prize :)

  2. jblyler Says:

    Hi Harry. Oddly enough, I have the Monday morning afternoon event on my personal calendar (see below). Not sure why it didn’t make it into my blog. Looks like a worthwhile panel, one that fits nicely into my summer PSU systems engineering course:
    > Hardware-Software Integration

    Cheers. — John

    HW/SW Interface Management – The path to smoother HW/SW integration?

    Monday 4th June, 2:30pm : Duolog Booth # 1520

    HW/SW integration is one of the biggest challenges in system realization. The interface between the hardware and software is often the source of issues and inefficiencies that impact productivity, quality and predictability and cause major problems for HW/SW integration. This panel session will discuss the effects of a poorly managed HW/SW interface and explore the types of solutions needed to deliver smoother HW/SW integration. The panel will also consider the outlook for the HW/SW interface and how it might be managed in the future.


    Jack Donovan, Duolog Technologies (Moderator)
    Gary Stringham, Gary Stringham & Associates
    Frank Schirrmeister, Cadence Design Systems
    Kurt Shuler, Arteris
    Harry Gries, “Harry, the ASIC Guy”.

Leave a Reply